Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
نویسندگان
چکیده
In their ultradian (2- to 3-hr) feeding rhythm, common voles show intraindividual synchrony from day to day, as well as interindividual synchrony between members of the population, even at remote distances. This study addresses the question of how resetting of the ultradian rhythm, a prerequisite for such synchronization, is achieved. Common voles were subjected to short light-dark cycles (1 hr darkness with light varying between 0.7 and 2.5 hr); to T cycles (long light-dark cycles in the circadian range--16 hr darkness and 3-13 hr light); to light pulses (15 min) during different circadian and ultradian phases; and to addition of D2O to the drinking water (25%). Short light-dark cycles and D2O were also applied to voles without circadian rhythmicity, after lesions of the suprachiasmatic nuclei. In these experiments, four hypotheses on synchronization of ultradian rhythmicity were tested: (I) synchronization by a direct response to light; (II) synchronization via the circadian system with multiple triggers, here called "cogs," each controlling a single ultradian feeding bout; and (III and IV) synchronization via the circadian system with a single "cog," which resets an ultradian oscillator and either (III) originates directly from the circadian pacemaker, or (IV) is mediated via the overt circadian activity rhythm. Short light-dark cycles failed to entrain ultradian rhythms, either in circadian-rhythmic or in non-circadian-rhythmic voles; light pulses did not cause phase shifts; and in extreme T cycles no stable phase relationship with light could be demonstrated. Thus, Hypothesis I was rejected. Changes in the circadian period (tau) were generated as aftereffects of light pulses, by entrainment in various T cycles, and by the addition of D2O to the drinking water. These changes in tau did not lead to parallel, let alone proportional, changes in the ultradian period. This excluded Hypothesis II. Both in T-cycle experiments and in the D2O experiments with circadian-rhythmic voles, the phase of ultradian feeding bouts was locked to the end of circadian activity rather than to the most prominent marker of the pacemaker, the onset of circadian activity. This was not expected under Hypothesis III, but was consistent with entrainment via activity (Hypothesis IV). On the basis of these experiments, we conclude that the most likely mechanism of ultradian entrainment is that of a light-insensitive ultradian oscillator, reset every dawn by the termination of the activity phase controlled by the circadian pacemaker, which is itself entrained by the light-dark cycle. Neither in circadian-rhythmic nor in non-circadian-rhythmic voles was the period of the feeding rhythm lengthened by administration of D2O. This insensitivity to deuterium is exceptional among biological rhythms.
منابع مشابه
Impact of behavior on central and peripheral circadian clocks in the common vole Microtus arvalis, a mammal with ultradian rhythms.
In most mammals, daily rhythms in physiology are driven by a circadian timing system composed of a master pacemaker in the suprachiasmatic nucleus (SCN) and peripheral oscillators in most body cells. The SCN clock, which is phase-entrained by light-dark cycles, is thought to synchronize subsidiary oscillators in peripheral tissues, mainly by driving cyclic feeding behavior. Here, we examined th...
متن کاملBehavioral responses to combinations of timed light, food availability, and ultradian rhythms in the common vole (Microtus arvalis).
Light is the main entraining signal of the central circadian clock, which drives circadian organization of activity. When food is made available during only certain parts of the day, it can entrain the clock in the liver without changing the phase of the central circadian clock. Although a hallmark of food entrainment is a behavioral anticipation of food availability, the extent of behavioral a...
متن کاملCircadian rhythms of C-FOS expression in the suprachiasmatic nuclei of the common vole (Microtus arvalis).
The suprachiasmatic nuclei of the hypothalamus (SCN) are the master circadian clock in mammals. Transcriptional activity in this master clock has a marker in the immediate-early gene c-Fos. Within the SCN, distinct differences in c-Fos in the ventrolateral and the dorsomedial SCN have been reported for rodent species such as rats, mice, and hamsters. We studied C-FOS expression in the common vo...
متن کاملControl of Rest:Activity by a Dopaminergic Ultradian Oscillator and the Circadian Clock
There is long-standing evidence for rhythms in locomotor activity, as well as various other aspects of physiology, with periods substantially shorter than 24 h in organisms ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, they often lack the period stability and expres...
متن کاملAuditory Neuroscience: Recalibration of Space Perception Requires Cortical Feedback
feeding rhythm during the Arctic polar day and night [14], and the emperor penguin (Aptenodytes forsteri) loses its melatonin rhythm during the Antarctic mid-winter [15]; on the other hand, several Arctic rodents and carnivores have been reported to exhibit 24-h activity rhythms during the polar day and/or in constant conditions [16–19]. Clearly, further comparative studies are needed to determ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biological rhythms
دوره 8 2 شماره
صفحات -
تاریخ انتشار 1993